Corroboration of mechanoregulatory algorithms for tissue differentiation during fracture healing: Comparison with in vivo results.
نویسندگان
چکیده
Several mechanoregulation algorithms proposed to control tissue differentiation during bone healing have been shown to accurately predict temporal and spatial tissue distributions during normal fracture healing. As these algorithms are different in nature and biophysical parameters, it raises the question of which reflects the actual mechanobiological processes the best. The aim of this study was to resolve this issue by corroborating the mechanoregulatory algorithms with more extensive in vivo bone healing data from animal experiments. A poroelastic three-dimensional finite element model of an ovine tibia with a 2.4 mm gap and external callus was used to simulate the course of tissue differentiation during fracture healing in an adaptive model. The mechanical conditions applied were similar to those used experimentally, with axial compression or torsional rotation as two distinct cases. Histological data at 4 and 8 weeks, and weekly radiographs, were used for comparison. By applying new mechanical conditions, torsional rotation, the predictions of the algorithms were distinguished successfully. In torsion, the algorithms regulated by strain and hydrostatic pressure failed to predict healing and bone formation as seen in experimental data. The algorithm regulated by deviatoric strain and fluid velocity predicted bridging and healing in torsion, as observed in vivo. The predictions of the algorithm regulated by deviatoric strain alone did not agree with in vivo data. None of the algorithms predicted patterns of healing entirely similar to those observed experimentally for both loading modes. However, patterns predicted by the algorithm based on deviatoric strain and fluid velocity was closest to experimental results. It was the only algorithm able to predict healing with torsional loading as seen in vivo.
منابع مشابه
Prediction of fracture healing under axial loading, shear loading and bending is possible using distortional and dilatational strains as determining mechanical stimuli.
Numerical models of secondary fracture healing are based on mechanoregulatory algorithms that use distortional strain alone or in combination with either dilatational strain or fluid velocity as determining stimuli for tissue differentiation and development. Comparison of these algorithms has previously suggested that healing processes under torsional rotational loading can only be properly sim...
متن کاملPrediction of the Time Course of Callus Stiffness as a Function of Mechanical Parameters in Experimental Rat Fracture Healing Studies - A Numerical Study
Numerous experimental fracture healing studies are performed on rats, in which different experimental, mechanical parameters are applied, thereby prohibiting direct comparison between each other. Numerical fracture healing simulation models are able to predict courses of fracture healing and offer support for pre-planning animal experiments and for post-hoc comparison between outcomes of differ...
متن کاملThe Influence of Load Magnitude on Fracture Repair in a Murine Model: a Fem Study
INTRODUCTION The treatment of bone fracture is an important public health problem in an ageing population. Healing involves a series of biological events that restores the tissue to its original shape and mechanical properties. It has been shown that the mechanical environment can modulate tissue differentiation. Several mechanoregulatory algorithms have been proposed to predict tissue differen...
متن کاملComparison of biophysical stimuli for mechano-regulation of tissue differentiation during fracture healing.
Most long-bone fractures heal through indirect or secondary fracture healing, a complex process in which endochondral ossification is an essential part and bone is regenerated by tissue differentiation. This process is sensitive to the mechanical environment, and several authors have proposed mechano-regulation algorithms to describe it using strain, pore pressure and/or interstitial fluid velo...
متن کاملHealing Potential of Mesenchymal Stem Cells Cultured on a Collagen-Based Scaffold for Skin Regeneration
Background: Wound healing of burned skin remains a major goal in public health. Previous reports showed that the bone marrow stem cells were potent in keratinization and vascularization of full thickness skin wounds. Methods: In this study, mesenchymal stem cells were derived from rat adipose tissues and characterized by flowcytometry. Staining methods were used to evaluate their differentiatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of orthopaedic research : official publication of the Orthopaedic Research Society
دوره 24 5 شماره
صفحات -
تاریخ انتشار 2006